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Abstract – New results are reported related to the extension of 
our prediction methods to the case of multistep forecasting using 
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I. INTRODUCTION 
 
Prediction of short time series is a topical problem [1]. 

Cases where the sample length N is too small for 
generating statistically reliable variants of prediction are 
encountered every so often. This is a characteristic of many 
applied problems of prediction in technology development, 
marketing, politology, investment planning, and other 
fields. According to statistical analysis, in order to take into 
account all components, the prediction base period should 
contain at least several hundreds of units. For periods of se-
veral tens of units, satisfactory predictions can be 
constructed only for the time series representable as the 
sum of the trend, seasonal, and random components. These 
models, however, must have a very limited number of 
parameters. Series made up by the sum of the trend and the 
random component sometimes may be predicted for even a 
smaller base period. Finally, as stated in [1] for a prediction 
base period smaller than some calculated value Nmin, a 
more or less satisfactory prediction on the basis of 
observations is impossible at all, and additional data are 
required.  
 All that is valid for the more difficult problem: multi-
step ahead prediction. Namely, as the interval in future, for 
which prediction is made, becomes comparable with the 
prediction base period, prediction does not make sense no 
matter how long both series are. Consequently, if the pre-
diction base period is short, the look in future must be 
limited. 

Among the fields not mentioned in [1], dealing with 
really small set of data or "prediction base period", we will 
comment here is the environmental impact of electronics 
which became an important issue nowadays [2]. As a 

matter of fact, the eco-design of electrical and electronic 
products is already a legislative matter [3],[4]). Electronic 
waste (EW) is considered hazardous while, in the same 
time, in enormous quantities. Prediction in this area is of 
paramount importance for planning and installing 
equipments, plants, and facilities for recycling and end-of-
life management of electronic products, while short term 
data are available only. 

In a set of recent studies [5], [6], [7], [8] dealing with 
the quantities of EW, attempts were made to make pre-
diction based on hunches and rules of thumb. In fact, some 
presumptions were made and predictions based on them 
published. Later, having missed the target, the 
presumptions were corrected, and so on. On the other side, 
there is a large number of publications dealing with 
prediction of time series as such, and with prediction 
related to environmental data based on artificial neural 
networks (ANNs), to mention only [9].  

Having all that in mind we undertook a project of 
developing an ANN based method that will be convenient 
for systematic implementation in stationary time series 
prediction with reduced set of data. Our first results were 
published in [10], [11], [12]. The main idea implemented 
was the following. If one wants to create neural network 
that may be used for forecasting one should enable this 
property during ANN’s training. In addition, the ANN used 
has to have such a structure to accommodate to the training 
process for prediction. Following these considerations new 
forecasting architectures were developed.  

The goal of this paper is to present extensions of the 
methods already published with the goal to implement 
them in multistep prediction.  

The structure of the paper is as follows. After general 
definitions and statement of the problem we will give a 
short background related to ANNs application to fore-
casting. Then we will describe two solutions for possible 
applications of ANNs aimed to the same forecasting task. 
Methods of application of these structures and extensions 
of the ANN structures will be proposed next, aimed to 
multistep ahead prediction. Finally short discussion of the 
results and consideration related to future work will be 
given. 

 
II. PROBLEM FORMULATION AND SOLUTION 

 
A time series is a number of observations that are taken 
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consecutively in time. A time series that can be predicted 
precisely is called deterministic. A time series that has 
future elements which can be partly determined using 
previous values, while the exact values cannot be predicted, 
is said to be stochastic [13].  The stochastic models provide 
the forecast as the expectation of the identified stochastic 
process. They allow calculations on statistical properties of 
the forecasting error (which of course rely on the 
assumptions made on the model). The deterministic 
models, on the other hand, provide only the forecast values, 
not a measure for the forecasting error [14]. 

We are here addressing deterministic type of time 
series, only. It is our task to find a functional expression 
that captures the complex interwoven deterministic 
relationships that exists between the phenomenon under 
consideration and the independent variables. 

Consider a scalar time series denoted by yi, i=1,2, …, 
m-1. It represents a set of observables of an unknown func-
tion Y=F(t), taken at equidistant time instants separated by 
the interval Δt i.e. ti+1= ti+Δt. One step ahead forecasting 
means to find such a function f that will perform the map-
ping  

ε)(  mYmtfmy     (1) 

where Ym is the desired response, with an acceptable error 
ε.  

The prediction of a time series is synonymous with 
modelling of the underlying physical process responsible 
for its generation [15]. This is the reason of the difficulty of 
the task. There have been many attempts to find solution to 
the problem. Among the classical deterministic methods we 
may mention the k-nearest-neighbour [16], in which the 
data series is searched for situations similar to the current 
one each time a forecast needs to be made. This method 
asks for kind of periodicity to function that is not the case 
in the situation considered in our proceedings. 

In the past decades ANNs have emerged as a technolo-
gy with a great promise for identifying and modelling data 
patterns that are not easily discernible by traditional 
methods. A comprehensive review of ANN use in forecas-
ting may be found in [17]. Among the many successful 
implementations we may mention [18] [19] [20]. A 
common feature, however, of the existing application is 
that they ask for a relatively long time series to become 
effective. Typically it should be not shorter than 50 data 
points  [17]. This is due to the fact that they all look for 
periodicity within the data what can be easily seen from the 
typical forecasting competition data [19]. Very short time 
series were treated [20], [21]. Here additional “nonsample 
information” was added to the time series in order to get 
statistical estimation from deterministic data. 

That is why we went for a search for topological 
structures of ANN that promise prediction based on short 
time series. In the next, we will first briefly introduce the 
feed-forward neural networks that will be used as a basic 
structure for prediction throughout this paper.  

The network is depicted in (Fig.1). It has only one hid-
den layer, which has been proven sufficient for this kind of 
problem [22]. Indices: “in”, “h”, and “o”, in this figure, 
stand for input, hidden, and output, respectively. For the set 
of weights, w(k, l), connecting the input and the hidden 
layer we have: k=1,2,..., min, l=1,2,..., mh, while for the set 
connecting the hidden and output layer we have: k=1,2, 
...mh, l=1,2,..., mo. The thresholds are here denoted as x,r, 
r=1,2, …, mh or mo, with x standing for “h” or “o”, depen-
ding on the layer. The neurons in the input layer are simply 
distributing the signals, while those in the hidden layer are 
activated by a sigmoidal (logistic) function. Finally, the 
neurons in the output layer are activated by a linear 
function.  

Creation of a feed forward ANN that performs a given 
task consists of several steps. First, one should decide on 
the number of inputs and outputs, min and mo, respectively. 
That usually comes with the nature of the problem under 
consideration.  

Next, according to the input-output structure the trai-
ning data are to be organized. Pairs of input-output vectors 
are taken from the known data and a list is created intended 
to be presented to the ANN during training. Generally spe-
aking, part of the input data is kept for validation of the 
training process but when prediction is considered there is 
no such data. We simply look to the unknown future. Veri-
fication of the prediction may be done only after time pas-
sed. Here the importance of the dependability onto the 
whole prediction algorithm and software comes into fore. 
The algorithm should be organized in that way to perform 
automatically and give no chance to mistakes.  

The internal structure of the network i.e. the number of 
hidden neurons (mh) is of paramount importance for suc-
cessful prediction. It defines the number of free parameters 
that are available for optimization (training). Of course, one 
would prefer as simple the ANN as possible. That not only 
makes the solution faster to run but also facilitates the trai-
ning process in: choice of the initial values of the parame-
ters, reaching convergence, and speeding up the training. 
To get the value of mh we applied a procedure that is based 
on proceedings given in [23]. 

We solve the initial value problem for the weights and 
thresholds by creating small random numbers with uniform 
distribution such that )αα,(k , where νk stands for the 

kth parameter (weight or threshold), while α is a properly 
chosen small number.  

When considering the training algorithm one must have 
in mind that it represents a search of the parameters space 
for the global minimum of the predefined error function. 
Any learning algorithm, being it in nature Newthon-Raph-
son, steepest descent, back propagation, annealing based 
(Metropolis), or genetic, which, for a given procedure cre-
ating initial solution, leads repetitively and systematically 
to a global minimum, is good enough for application. Of 
course, some of the algorithms will lead to the solution 
with different velocity (expressed in number of iterations 
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and elapsed time) but that is of secondary importance. A-
mong the successful algorithms one chooses the one that is 
fastest, simplest to program, needs less computer memory, 
etc. The learning algorithm we used for training in these 
proceedings is a version of the steepest-descent minimi-
zation algorithm [24].  It is our experience (almost twenty 
years, now) that for the problem under consideration it 
performs the best. 

 

Figure 1.  Fully connected feed-forward neural network with one 
hidden layer and multiple outputs  

In prediction of time series, in our case, a set of obser-
vables (samples) is given (per year) meaning that only one 
input signal is available, the discretized time. We are pre-
dicting one quantity at a time meaning one output is nee-
ded, too. The values of the output are numbers (millions of 
pieces or weight of obsolete computer units). To make the 
forecasting problem numerically feasible we performed 
transformation in both the time variable and the response. 
The time was reduced by t0-1 so that 

 t=t*-(t0-1).     (2)  

Having in mind that t* stands for the year, this reduction 
gives the value of 1 to the year (t0) related to the first 
sample. The samples are normalized in the following way 

  y=y* / M       (3) 

where y* stands for the current value of the target function, 
M is a constant which will be chosen according to the 
problem at hand (for example, M=106

 cubic feet for the 
volume of obsolete computers). 

If the architecture depicted in (Fig. 1) was to be 
implemented the following series would be learned: (t

i
, 

f(t
i
)), i=1,...,m-1. m-1 is here the number of samples available i.e. 

the number of observables.  
Starting with the basic architecture of (Fig. 1.), the 

possible solutions were investigated in [10] [11] and two 
new architectures were suggested to be the most convenient 
for the solution of the forecasting problem based on short 
prediction base period. 

The first one, named time controlled recurrent (TCR) 
was inspired by the time delayed recurrent ANN [15]. It is 
a recurrent and time delayed architecture but, in the same 
time, insists on the time variable to control the predicted 

value as depicted in (Figure 2). Our intention was to benefit 
from both: the generalization property of the ANNs and the 
success of the recurrent architecture. Here in fact, the net-
work is learning a set in which the output value is 
controlled by its own previous instances and the present 
time. The version of this network, intended to be imple-
mented for one-step-ahead prediction may be analytically 
expressed as: 

) ..., ,1 ,,(1 qiyiyiyitfiy  , i=q+1, ..., m-2, (5a)    
 

where q stands for the number of previous values of the 
function used for training. q>0 and, obviously, q+1<m-1. 
After training, the predicted value in the first next step is 
obtained as 

  ),...,1 ,,1( qmymymymtfmy  .  (5b) 

 Note that the learning procedure here was implemented 
exactly in the same way as in [25]. 

 

 

Figure 2. TCR. Time controlled recurrent ANN  

 
The second architecture is named feed forward 

accommodated for prediction (FFAP) and depicted in (Fig. 
3). Our idea was here to force the neural network to 
simultaneously learn the same mapping several times but 
shifted in time. In that way, we presume, the previous 
responses of the function will have larger influence on the 
f(t) mapping. 

 

 
 

Figure 3. FFAP. Feed forward ANN structure  
accommodated for prediction 
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There is one input terminal that, in our case, is ti. The 
Output3 terminal, or the future terminal, in our case, is to 
be forced to approximate yi+1. Output2 should learn the pre-
sent value i.e. yi. Finally, Output1 should learn the past 
value i.e. yi-1. Again, if one wants to control the mapping 
by a set of previous values, Output1 may be seen as a vector 
such as { yi-1 , yi-2, …, yi-q}. We may express the functio-
nality of the network, for the case of one-step-ahead 
prediction, as 

 )(},...,,,{ 11 iqiiii tyyyy f ,  i=q+1, ..., m-2,  (6a) 

where Output1= },...,{ 1 qii yy  , meaning that: one future, 

one present and q previous responses are to be learned. 
After training the predicted and the approximated values of 
the output are obtained by running the ANN as: 

  )(},...,,,{ 11 mqmmmm tyyyy f .  (6b) 

The presumption of the mutual interrelation between 
the output responses of the FFAP network comes from the 
fact that they all depend on the parameters (weights and 
thresholds) of the hidden neurons. By adjusting the para-
meters to learn yi, for example, one simultaneously changes 
the yi+1 response, and vice versa. In that way, during trai-
ning, the values of the response from previous time instants 
indirectly control the prediction. 

 
III. IMPLEMENTATION EXAMPLE 

 
An examples will be given here demonstrating the 

properties of the solutions proposed with q=2. 
We will consider the prediction of the quantities of ob-

solete computers in the USA based on data given in [5]. 
According to [5], putting t0= 1991, after normalization, we 
get (Table 1) as the set of observables representing the 
quantities of obsolete computers in the USA. Here M=106

 
cubic feet. The same data are visualized in (Fig. 4). It may 
be seen that the function that governs the phenomenon is 
not monotonic giving rise to the difficulty of prediction. If, 
for example, periodicity is to be exploited in this example 
(what would be done if the k-nearest neighbor method was 
implemented)  then f(9)  would be less than 14, since after 
three points of positive increments (as for the interval 
{1,3}) comes a negative one. f(4)<f(3) would lead to 
f(9)<f(8) which is not the case. 

The first eight samples will be used as training data 
while the last one i.e. t=9 and f (t)=18.4, will be compared 
with the predictions obtained, in order to validate the 
method. 

In the following, two experiments will be described ba-
sed ANN architectures emanated from (Figure 2) and 
(Figure 3). 

The results obtained after learning are expressed in 
(Table 2). It contains information on both the structure of 

the networks and the values obtained by prediction. 

 

Figure 4. Visualization of Table 1 
 

TABLE 1. 
QUANTITIES OF OBSOLETE COMPUTERS IN TIME 

t 1 2 3 4 5 6 7 8 9 
f(t) 7.03 8.67 10.0 9.33 9.85 10.18 12.54 14.76 18.4

 
TABLE 2.  

PREDICTION OF QUANTITIES OF OBSOLETE COMPUTERS. NOTE: 
F(9)=18.4. 

Solution 
type 

No. of hidden 
neurons 

No. of output 
neurons 

f (9) 
Error 

% 
TCR 10 1 17.2114 6.46 
FFAP 4 4 18.2274 0.93 

 
By examining the results depicted in (Table 2) we may 

conclude that satisfactory prediction was obtained with 
both architectures. Nevertheless, it is to be mentioned that 
the FFAP is considerably nearer to the solution needed. 
What is not expressed in the table is the fact that the FFAP 
solution is much more sensitive to the initial solution for 
the weights and thresholds, making the training process 
more difficult and uncertain.  

It is not shown here, for the sake of simplicity, but it is 
worth mentioning that both TCR and FFAP approximate 
excellent. That means that except for the [9, f(9)] point, all 
previous points on the curve f(t) overlap exactly with the 
ones depicted in (Figure 4). One should not substitute 
“approximation” with “prediction”, however. Namely, 
approximation is achieved within a given interval. Here, for 
this example, that is t{1,8}. The ability of the ANN to 
successfully calculate the values of the function for any 
value of the independent variable within that interval is 
referred to as generalization. In our case we are looking for 
the extrapolation i.e. the value of the function outside of 
the given interval. That is what we consider forecasting or 
prediction. 

There is no recommendation as to which of these 
solutions is to be accepted or discarded. Namely, prediction 
is a search in the dark and one always needs some referen-
ce for the solution offered. Here, since the FFAP solution 
offers better results, one should keep the TCR solution as a 
confirmation that the FFAP is not a complete miss what is, 
of course, possible since the training of an ANN is iterative 
process that may be stuck in local minimum. 
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IV. IMPLEMENTATION TO MULTI-STEP PREDICTION 
 
The main goal of our research was to develop a method 

for one-step-ahead prediction based on reduced set of data. 
Implementation to long term prediction was always a temp-
tation while we are aware that it is difficult to believe that 
one may predict for a period in future as long as the pre-
diction base period is. Instead, here we will give the results 
of an attempt to apply our method to prediction for a some-
what longer period than one-step-ahead. 
 There are, in our opinion, two ways of how our method 
may be applied for longer term prediction. First, one may 
use the predicted results for the time instant ti+1, namely 
yi+1, and to concatenate the input set with them. Now, the 
prediction may start for ti+2 as if one has longer prediction 
base period. This may be repeated as long as wanted. The 
problem with this idea is related to the fact that the error in 
prediction contained in yi+1 will be accumulated in the next 
prediction, and so on. At the end, one may have no confi-
dence in the final long term prediction. Example of imple-
mentation of this idea to the problem of forecasting quan-
tities of obsolete computers is given in Table 3. Both TCR 
and FFAP ANNs were implemented to get prediction for 
t=9, based on samples for t=1,2,3,…,7. The idea is to 
predict two intervals ahead. The value of y for t=8 was pre-
dicted first. Then, it was used as if it was part of the input 
file to predict y(9). We can see that the results are worse 
than the previous ones with the ones obtained with FFAP 
ANN being absolutely deteriorated. 

TABLE 3.  
TWO-STEP-AHEAD PREDICTION BY CONCATENATION 

 Actual Predicted Error in %
TCR 18.4 16.8616 8.36 
FFAP 18.4 26.2071 -66.3 

 Alternatively, one may predict two (or more) steps 
ahead directly by skipping the intermediate intervals. In 
such a case, for the TCR ANN, for instance, one would 
perform the following  

(7a)  ),...,,,( 1 qiiiiki yyytfy   ,  i=q+1, ...,m-1-k, 

while for the FFAP case we have 

(7b) )(},...,,,{ 1 iqiiiki tyyyy f ,  i=q+1, ...,m-1-k. 

In this expressions k stands for the number of intervals in 
future after the prediction base period.  
 Looking to them we find that for the one-step-ahead 
prediction (k=1) we had m-1 samples to be used for training 
and b=m-2-q “training lessons”. On the other side, for 
multistep prediction, the number of training lessons may be 
stated as b=m-1-k-q, as depicted in Fig. 5 for q=2 and k=2. 
If the number of intervals in future, k, rises, b is dimi-
nished. It is equivalent to reduction of the prediction base 
period what should lead to reduction of the quality of the 
forecast.  

 q=2 b=4 k=2  
t 1 2 3 4 5 6 7 8 9 

f(t) 7.03 8.67 10.0 9.33 9.85 10.18 12.54 14.76 18.4

Figure 5. The reduction of the number of training lessons in 
multistep ahead prediction 

 This method of prediction was checked by an experi-
ment related to prediction of the number of obsolete com-
puters as above. Again both TCR and FFAP ANNs were 
implemented. The forecasting results are given in Table 4. 
Comparing these result with the ones depicted in Table 2, 
we may conclude that the expected deterioration does not 
becomes apparent at once (the number of training lessons 
was reduced by 1 only). In the TCR case we got even an 
improvement. That makes this approach promising in 
general and especially in cases when a bit larger prediction 
base period is available.  

TABLE 4.  
TWO-STEP-AHEAD PREDICTION WITH SKIPPING 

 Actual Predicted Error in %
TCR 18.4 18.7458 -1.879 
FFAP 18.4 17.5698 4.512 

 Finally, for the FFAP ANN only, in cases where mul-
tiple-step prediction is planned Output3 may be seen as a 
vector. In this situation, referring to Fig. 3, Output1 has q 
terminals, Output2 has 1 terminal, and Output3 has k 
terminals. Analytically, this may be expressed as  

(8)   )(},...,,,...,,{ 11 iqiiikiki tyyyyy f , i=q+1, 

...,m-1-k. 

 The appropriate structure of the FFAP ANN is depicted 
in Fig. 6 for q=2 and k=2. It is important to notice that no 
skipping is present now. The network is presented by all 
the future values of the function. 
 Applying this method to the case of obsolete computers 
with two-steps-ahead prediction, with q=2 and k=2, pro-
duced a solution of f(9)=18.5106 what is a miss of only 
0,6%. It is an excellent result comparing with the results 
presented here earlier. The number of training lessons was 
now reduced to t{3,6}.  

 

Figure 6. FFAP structure for two step ahead prediction without 
skipping 
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TABLE 5.  
DATA STRUCTURE FOR THE FFAP NETWORK  

PREDICTING TWO-STEPS-AHEAD WITHOUT SKIPPING.  

i y
i-2

 y
i-1

 y
i
 y

i+1
 y

i+2
 

T
ra

in
in

g 3 7.03 8.67 10.0 9.33 9.85 
4 8.67 10.0 9.33 9.85 10.18
5 10.0 9.33 9.85 10.18 12.54
6 9.33 9.85 10.18 12.54 14.76

7 
Prediction 

6.447 11.78 10.59 18.40 18.51

Expected  
valueas 

9.85 10.18 12.54 14.76 18.4 

 The data structure for training and running the FFAP 
network predicting two-steps-ahead without skipping is gi-
ven in Table 5. Here, for convenience, in the row i=7, the 
responses of all outputs of the network are presented while 
only the last one is usable for prediction. The first four 
outputs are trained to approximate. To go further, in the last 
row, the expected values for every output are listed. Com-
paring the last two rows of Table 5 one easily concludes 
that no output except the one intended to, is predicting suc-
cessfully. That is in accordance with our previous results 
discussed in [11]: “No ANN trained for interpolation can 
predict (extrapolate) successfully”.  
 Finally, the response of the predicting output (y5) as a 
function of time together with the target values is depicted 
in Fig. 7. One may see that this response not only extra-
polates but interpolates excellent as well.  
 To make the results completely reproducible, Table 6 
contains the initial values of the synaptic weigths and 

thresholds used for the training process of the FFAP 
network predicting two-steps-ahead without skipping. 
Table 7 contains the final values obtained after training and 
used to get the prediction. 

0
2
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8
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16

18

4 6 8

t [years]

Actual
Predicted

f t( )

4 5 7 9  

Figure 7. Response of the FFAP structure for two-steps- ahead 
prediction without skipping 

TABLE 6.  
INITIAL VALUES OF THE SYNAPTIC WEIGHTS AND THRESHOLDS FOR 

THE FFAP NETWORK PREDICTING TWO- STEPS-AHEAD WITHOUT 

SKIPPING 

j win(1, j) h,j wo(j,1) wo(j,2) wo(j,3) wo(j,4) wo(j,5) o,j

1 -.122 -.102 -.132 -.132 -.32 -.32 -.132 .135
2 .131 .211 .1243 .131 .124 .124 .240 -.21
3 -.212 -.131 -.214 -.14 -.140 -.140 -.124 .123
4 .120 .121 .124 .240 .24 .324 .324 -.141
5   .121

 

TABLE 7.  
VALUES OF THE SYNAPTIC WEIGHTS AND THRESHOLDS FOR THE FFAP NETWORK  

PREDICTING TWO- STEPS-AHEAD WITHOUT SKIPPING 

j win(1, j) h,j wo(j,1) wo(j,2) wo(j,3) wo(j,4) wo(j,5) o,j 

1 -4.45698 -0.584837 -5.72051 6.86385 -5.77336 1.01748 -4.08986 5.81894 
2 6.19043 -6.12091 -3.14972 4.6372 1.23713 5.53971 2.14366 -17.4828 
3 -5.39005 -6.21706 -2.41941 -3.80742 -4.04059 -7.0992 -6.93629 15.4904 
4 42.7411 1.85431 -4.34902 17.3764 -14.6085 2.31862 -5.84657 -2.36684 
5     6.52768 

 
 

V CONCLUSION 
 

 New results were reported related to multistep ahead 
prediction using ANNs based on reduced information. Se-
veral solutions were proposed and experimental results 
were given for one implementation. In general, encoura-
ging results were obtained for two-step prediction except 
for the method using concatenation. These results will be a 
basis for further research and implementation to different 
contexts such the ones presented in [10], [12], [26] and 
[27]. 
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